
DOCUMENT RESUME

ED 442 842 TM 031 262

AUTHOR Samejima, Fumiko
TITLE Some Considerations for Eliminating Biases in Ability

Estimation in Computerized Adaptive Testing.
PUB DATE 1998-04-17
NOTE 35p.; Paper presented at the Annual Meeting of the American

Educational Research Association (San Diego, CA, April
13-17, 1998).

PUB TYPE Reports Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Ability; *Adaptive Testing; *Estimation (Mathematics); Item

Response Theory; *Nonparametric Statistics; *Statistical
Bias

ABSTRACT
Item response theory (IRT) has been adapted as the

theoretical foundation of computerized adaptive testing (CAT) for several
decades. In applying IRT to CAT, there are certain considerations that are
essential, and yet tend to be neglected. These essential issues are addressed
in this paper, and then several ways of eliminating noise and bias in
estimating the individual parameter, theta, of person "a" are proposed and
discussed, so that accuracy and efficiency in ability estimation can be
increased. The content validity of the ability dimension is emphasized, and
the idea of core test items is proposed. Devices are suggested to eliminate
noise from multiple-choice items by using the nonparametric estimation of
operating characteristics effectively in pilot studies. The use of the normal
ogive model is suggested instead of the three-parameter logistic model. It is
further suggested that several graded response items be used at the beginning
of the CAT to avoid the influence of bias and lack of information inherent in
dichotomous response items. The Weighted Likelihood Estimate of T. Warm
(1989) and its expanded form for general discrete responses are discussed as
an effective method of eliminating bias in ability estimation, and the
usefulness of Warm's weight function as a prior is discussed. Use of the
modified test information function is suggested for the same purpose.
(Contains 10 figures and 18 references.) (SLD)

Reproductions supplied by EDRS are the best that can be made
from the original document.



'N
CO

O

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

04r:us document has been reproduced as
received from the person or organization
originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

t Sa" 4? (3L

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1

SOME CONSIDERATIONS FOR
ELIMINATING BIASES IN
ABILITY ESTIMATION IN

COMPUTERIZED ADAPTIVE
TESTING1

FUMIKO SAMEJIMA

UNIVERSITY OF TENNESSEE

The 1998 Annual AERA Meeting

April 17, 1998

San Diego, California

BEST COPY AVAILABLE

1 Requests for reprints should be sent to Fumiko Samejima, Department of Psychology, 405 Austin Peay Bldg., University of
Tennessee, Knoxville, Tennessee 37996-0900. E-mail: samejima@psychl.psych.utk.edu

9



Item response theory (IRT) has been adopted as the theoretical foundation of computerized

adaptive testing (CAT) for several decades. In applying IRT for CAT, however, there are

certain considerations that are essential, and yet tend to be neglected. In this paper, first these

essential issues are addressed and discussed, and then several ways of eliminating noise and

bias in estimating the individual parameter O. of person a are proposed and discussed, so

that accuracy and efficiency in ability estimation be increased.

I. CONTENT VALIDITY OF THE ABILITY DIMENSION

[I.1] Necessity of Operational Definition of Ability 0

There has been a tendency that, once methodologies have been developed in IRT and ac-

comodated in computer software, researchers apply them rather mechanically, without ques-

tioning if their target of estimation, ability 9 , is properly defined in the process. Without

due considerations for this issue, however, all our effort will be meaningless, and we will end

up with obtaining mere artifacts that are of little psychological and educational significance.

To give a concrete example, there is no guarantee that the 0 's measured by LOGIST and

BILOG are the same ability even if they are based on the same set of data, and yet very few

researchers raise this question.

Thus an operational definition of 9 is by far the most important in applying IRT for

educational and psychological data. Although ability 9 tends to be simply assumed, and

its unidimensionality is taken for granted, we must start with defining 9 operationally, and

confirm its unidimensionality.

[I.2] Mathematical Challenge and Contribution to Education

In developing theories based on mathematics, there usually is a great deal of mathematical

challenge that motivates psychometricians to work on specific topics. Thus we owe valuable

outcomes in IRT to those theorists who have accepted such a: challenge, conquered difficult
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problems and provided us with methodologies.

Too much emphasis on mathematical challenge sometimes makes us lose perspective, how-

ever. Take an example in simultaneous estimation of the individual parameter 0a of a person

a and the item parameters following some mathematical model. There is no doubt that this

topic involves a great deal of mathematical challenge, and yet we must wonder if it is legitimate

to estimate both individual and item parameters simultaneously.

It is advisable to keep in mind that our objective is to estimate the individual parameter 00

and that test items are only tools with which 0a is estimated. Thus whenever necessity arises

we can change or replace those human-made test items. In defining ability 0 operationally,

a set of items that reflects the target ability must be carefully selected so that the content

validity of the resulting ability dimension be assured.

[I.3] Core Test Items

Suppose we have a set of test items whose content validity are assured from our past research

findings. Let us call them core test items. If we succeed in extracting a single pricipal common

factor behind these items, then we may accept it as the operationally defined 0 . If we do not,

then factor structure of those common factors should be examined, and appropriate deletion

and/or addition of some items will eliminate minor clusters to provide a single principal common

factor.

Ability 0 thus operationally defined should have content validity, and will be used for item

calibration of all items in the itempool. This is especially useful in on-line item calibration.

Note that those core items do not have to be included in the itempool. To give an example,

suppose, for practicality, we need to use only dichotomous response items in CAT. We can still

include graded response items in the set of core test items, and in fact it is desirable to do so

because:
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1. in general, the amount of item information provided by a graded response item is

greater than that of a dichotomous response item (see Samejima, 1969), and

2. more logical reasoning processes can be accomodated in a graded response item than

in a dichotomous response item.

Insert Figure 1 About Here

Figure 1 presents a set of example questions taken from LSAT, the Official Prep Test III,

1991, Vol. 2. We could make a single graded response item out of these questions with the

grades 0,1,2,3,4 , as illustrated in Figure 2. In this example, score 1 is given to those who

found out the positions of J and T directly from the statements (e) and (f), score 2 is given

to those who discovered, in addition, indeterminancy of the positions of K and L and that

of X , Y and Z from the statements (b), (c) and (d), score 3 to those who found out the

position of U , and score 4 to those who discovered the positions of K and L in the if

situation given by the statement (g). This type of graded response item will be appropriate

for a core test item because of its abundant item information for a wide range of 9 and the

fact that it represents logical reasoning processes necessary for grasping both what we can say

and what we cannot say based on the statements. Note that we could increase the number of

grade categories to 6, 7 or more if we further elaborate if questions exemplified by (g).

Insert Figure 2 About Here
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II. ELIMINATION OF NOISE CAUSED BY GUESSING

[HA] Unique Maximum Condition

Let g (= 1,2, ... , n) denote an item, which elicits any discrete response. Let Pkg(0) be

the operating characteristic of the discrete response Kg = kg defined by

Pkg(0) a- prob. [Kg = kg 19] , (1)

with the assumption that Pk9(0) is, at least, five times differentiable with respect to 0

Samejima (1969, 1972) defined the basic function Ak9(9) such that

Ak9(0) = log Pk
9(0)

(2)

Samejima (1973) also defined the item response information function, 49(0) , which is given

by

/kg (0) = 42-2
ae2 log Pkg(°) (3)

and the item information function 4(0) is obtained as the conditional expectation, given 0 ,

of the item response information function, that is,

/.9(9) = E[4g(0) I 0] = E 49(0) Pkg(0) (4)

Eq. (4) includes Birnbaum's (1968) item information function for a dichotomous item as a

special case.

The response pattern V is given by

V1 = (K1, K2, K3, Kn)

and due to local independence (Lord & Novick, 1968) the likelihood function L(v

general discrete responses can be written as

(5)

I 0) for

L(v 16) = Pv(0) a prob.[V = v 16] = II pk,(9) , (6)
kgEv
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where Pu(9) is the operating characteristic of the response pattern V = v . From Eqs. (3)

and (6) the response pattern information function, Iv(0) , is given by

M(0) --52
log /3(0) = E ikg(o) . (7)592 kg Ev

The test information function, I(0) , is defined as the conditional expectation of the response

pattern information function, given 9 , and from Eqs. (3), (4), (6) and (7) we obtain

/(0) = E[I(0) I 0] = E 4(0) 13,(0) E /gm (8)
g=i

It is obvious from Eqs. (2) and (6) that for a test of n graded response items there are only

E9.,1 mg n basic functions defined by Eq. (2). Using this small number of basic functions, a

simple algorithm provides fIgn.i(mg + 1) likelihood equations and hence the same numbers of

maximum likelihood estimates (MLE's) 's . For example, if n = 10 and mg = 2 for all

items, then 30 basic functions provide MLE et, 's for as many as 59,049 different response

patterns. When all items are scored dichotomously, the number of basic functions is 2n and

they provide 2 MLE's.

Samejima (1969, 1972) proposed a sufficient condition for a discrete item response to provide

a unique local or terminal maximum likelihood estimate for every response pattern consisting

of such item responses. The condition is that the basic function Ak9(0) , defined by Eq. (2),

be strictly decreasing in 0 with non-negative and non-positive values for its two asymptotes,

respectively. For brevity, this condition has often been referred to as the unique maximum

condition. It is noted from Eqs. (2) and (3) that the first part of this condition can be

rephrased, that is, the item response information function 4g(9) be positive for all 9 except,

at most, at an enumerable number of points where it may assume zero.

It has been shown (Samejima, 1969, 1972) that the unique maximum condition is satisfied

by both the normal ogive model and the logistic model for dichotomous responses. Let Pg(0)

be the item characteristic curve (ICC), which is defined by

Pg(9) prob. [Ug = 1 10] ,



where Ug (= 0,1) is a binary item score of item g with u9 as its realization. In the normal

ogive and logistic models, ICC's are given by

1)9(0)
1 U2

Xe p[
-co

du ,

22-

and

(9)

1
P9(0) = exp{ Dag(0 bg)}

(10)

respectively, where a9 (> 0) and b9 are the discrimination and difficulty parameters and

D = 1.702 in Eq. (10) is a scaling factor.

It has also been shown (Samejima, 1972) that both the normal ogive and logistic models for

graded responses satisfy the unique maximum condition, and so does Bock's nominal response

model (Bock, 1972), which includes both Masters' partial credit model (Masters, 1982) and

Muraki's generalized partial credit model (Muraki, 1992) for graded responses as special cases

(see Samejima, 1972). It has also been proved that all models that belong to the logistic

positive exponent family (Samejima, 1997) satisfy the same condition. Thus in these models

the likelihood function that is based on the response pattern has a unique local or terminal

maximum for every v E V .

It should be noted, however, that the three-parameter logistic model (3PL), whose ICC is

given by

P9(0) = c9 + (1 c9)' 9(9) , (11)

where
1

90) + exp{ Da9(0 bg)}

and c9 is the third parameter called the guessing parameter, does not satisfy the unique

maximum condition (Samejima, 1972, 1973), and thus for some response patterns the likelihood

functions may have multi-modes. Yen, Burket & Sykes (1991) have shown that multi-modality

of the likelihood function occurs not infrequently for response patterns that usually come across

in empirical data when the 3PL is used.

8
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[II.2] Suggestion of the Use of the Normal Ogive Model

It is a common practice in CAT that the 3PL is adopted as the mathematical model for

multiple-choice test items in the itempool. Since the third parameter c9 in Eq. (11) is nothing

but noise that lowers the accuracy of estimation of the individual parameter Oa , as is obvious

from the fact that the 3PL does not even satisfy the unique maximum condition, it is desirable

to replace it with some other model that includes less noise and, therefore, provides greater

accuracy in ability estimation.

To realize this, first of all we must develop test items whose ICC's do not include so much

noise within the framework of multiple choice format. Samejima (1994a) distinguished infor-

mative distractors from equivalent distractors, and called the operating characteristic of an

informative distractor the plausibility function. Suppose we have developed an item whose

distractors have differential information, in the sense that they tend to attract examinees of

different levels of ability. In practice, it is desirable to include a distractor whose plausibility is

identified by examinees of substantially high levels of ability, another distractor which attracts

examinees of slightly lower levels of ability, etc., down to a distractor which attracts examinees

of very low levels of ability. In the noiseless situation we can treat such an item as a graded

response item.

Insert Figure 3 About Here

Figure 3 illustrates the ICC of such an item by a solid line, and the plausibility functions

of the 4 distractors by dashed lines of various lengths in the noiseless situation, following the

normal ogive model for graded responses (Samejima, 1969, 1972). In this model, the operating

characteristics, Pz9(9) 's , are given by

P.9(6) = P:9(0) P(.9 +1)(6)

97
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where P* (0) is called the cummulative operating characteristic of the graded item score

(= 0,1,2, ..., m9) of item g which is given by

1 u2
P:9(0) = exp[ I du , (13)

27 -00

where a9 (> 0) is the item discrimination parameter, and bzg is the item response difficulty

parameter which satisfies

oo = bo < bi < < kag < byag+i = oo

In the present example, the parameters in Eq. (13) are a9 = 1.0 and

bzg = 1.50, 0.50, 0.00, 0.75,1.25 respectively.

In the noiseless situation no guessing occurs, and examinees who do not find plausibility

in any of the 5 alternative answers are supposed to honestly check the additional category,

don't know. The strictly decreasing curve with the longest dashes in Figure 3 represents the

operating characteristic of this don't-know category.

In practice, however, we cannot expect such total honesty, and it is likely that examinees

in the don't-know category turn to guessing. Figure 4 presents the operating characteristics of

the five alternative answers assuming that examinees in the don't-know group guess randomly.

Insert Figure 4 About Here

Figure 5 presents the ICC taken from Figure 4 in comparison with the one following the

normal ogive model for dichotomous responses whose ICC is given by Eq. (9) with a9 = 1.00

and b9 = 1.25 , together with the ICC in the 3PL with c9 = 0.2 that fits the ICC in question

very well except on lower levels of 0 . If we accept the ICC in the 3PL for this item, the critical

value ig equals 1.096 , and below this value the uniqueness of the MLE is not assured (see

Samejima, 1973). The item is, therefore, not appropriate to use for examinees whose individual

parameters Oa 's are below this value of 0 .

10
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Insert Figure 5 About Here

If we accept the ICC in the normal ogive model as an approximation, however, the fit is

extremely good for the interval of 0 , (0.3, oo) . Since it is not likely that, in CAT, this item

is used for examinees whose 0. 's are lower than 0.3 at which the ICC is as low as 0.15 , in

practice this item can be treated as a noise free item, and the use of normal ogive model will

be justified.

Birnbaum (1968) proposed the logistic model whose ICC is given by Eq. (10) as a substitute

for the normal ogive model. A strength of the logistic model lies in its mathematical simplicity,

that includes a sufficient statistic E9=1 u 9 a 9 which enables us to obtain the MLE without

even using a computer. In this day of advanced computer technologies, however, we can use

the normal ogive model just as easily, so there is no need for any substitute models.

[II.3] Effective Use of Nonparametric Approach

In order to find out if the distractors of our item are informative or not, we must discover

their plausibility functions. For this purpose, nonparametric approaches for the estimation of

operating characteristics, which do not a priori assume any mathematical forms, are by far the

most useful.

Insert Figure 6 About Here

Figure 6 exemplifies the results obtained by using the simple sum procedure of the condi-

tional p.d.f. approach (see Samejima, 1998) for the multiple-choice items of the Iowa Level 11

Vocabulary Subtest. Thus it has been disclosed that the item represented by the upper graph

has informative distractors, while the distractors of the item represented by the lower graph

9 11



do not provide differential information, and, therefore, are equivalent distractors. Because test

items are human-made, if in pilot studies we discover that their disctractors belong to the sec-

ond category, we can replace them by more informative ones that belong to the first category.

Such pilot studies can be conducted in on-line item calibration, which is appropriate for CAT.

III. INITIAL TEST ITEMS IN CAT

Figure 7 presents the square roots of the test information function, which is given by Eq.

(8), of hypothetical 30 equivalent dichotomous test items following the normal ogive model,

with the common difficulty parameter b9 = 0 for all items of the five tests and the common

discrimination parameters ag = 0.4, 0.7,1.0,1.5, 2.0 for items of the separate tests, respectively.

This square root of the test information function, 0(0) , is the reciprocal of the asymptotic

standard error of estimation specified as a function of 0 .

Insert Figure 7 About Here

Figure 7 implies that, although the minimal estimation error is smaller when the common

item discrimination parameter is larger, the interval of 0 for which the error is sufficiently

small is narrower. Thus contrary to the general belief the use of items with high discrimination

parameters may not be desirable, especially at the initial stage of CAT where the examinee's

estimated individual parameter fluctuates for a relatively wide range.

This is also supported by the fact that, if items have higher discrimination parameters, the

MLE bias function, B(0; av) , which is given by

1
n -tPg(0)2Pg(0)

B(0; ov) =
2[I(0)]2 4 P9(0)Q g(0)

for a test of dichotomous items in general where

) (14)

Q9(0) = 1 P9(0) , (15)
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has a narrower interval of 0 for which the MLE is practically unbiased. This is illustrated in

Figure 8 for the same five hypothetical tests of 30 equivalent dichotomous items.

Insert Figure 8 About Here

A better solution for this problem than the use of low discrimination items at the initial

stage of CAT may be the use of several graded response items such as the one illustrated in

[I.3]. Since in general a graded response item provides a greater amount of information, and

also a wider interval of 9 for which MLE is practically unbiased, than a dichotomous item,

its use will be an ideal solution.

IV. ELIMINATION OF BIAS IN ABILITY ESTIMATION

[IV. 1] Warm's Weighted Likelihood Estimate

A class of Bayesian modal estimators, 9: , of ability 0 can be defined as the value of 0

that maximizes

L(v 19) f(0) ,

where L(v 19) is the likelihood function of a specific response pattern V = v , and f(0) is

known as a prior. Thus 0: is the solution of

a a
0log L(v I 0) + a:

a° ae
f(0)

When all the n items are scored dichotomously, the response pattern V takes the form of

V' = (U1, U2, U3, Un) .

By local independence the likelihood function L(v 1 9) can be written as

n

L(v 18) = II Pg(0)"g Q g(9)1ug
g=1

11 13
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where Q9(0) is given by Eq. (15).

Lord (1983) proposed the bias function of the MLE, which is denoted by B(0; in this

paper, for 3PL in which the ICC is given by Eq. (11). This bias function is given by

B(0; ot,) = D[I(0)] -2 Eagig(o)[Wg(o)] .

g=1
(17)

Warm's (1989) weighted likelihood estimate (WLE) was proposed in the effort of minimizing

the bias of 0: by setting an appropriate prior, which he denoted w(0) . This prior can be

expressed by the equation

ae
a log w(9) = B(0; k) I(0) ,

where B(9; 6,,) is the MLE bias function in 3PL given by Eq. (17), and .40) is the test

information function that can be written as

1.(0) = 6Pg(9)
P9(0) Qg(9)

(18)

for general dichotomous responses (Birnbaum, 1968). Thus the WLE, which is denoted by A,

in this paper, is the solution of:

a a n
[219 Pg(0)] #Pg(0) BoA)i(0) 0 (19)

a log L(v I 9) + -a-z Ewo) P9(0)Q9(0)E

[IV. 2] Expansion of the WLE for General Discrete Responses

Samejima (1993a, 1993b) expanded Lord's MLE bias function in 3PL for any discrete re-

sponses Kg 's , for which the response pattern V is given by Eq. (5). This MLE bias function

for general discrete responses is given by

B(9; o) = 80-13k9(9) :4P(0)
(20)

2[I(9)]2 F Pkg(0)g=1 kg

where Pkg(0) and I(0) are defined by Eqs. (1) and (8), respectively. When Kg is replaced

by the graded item score X9 , all kg 's in Eq. (20) are changed to x9 's (= 0,1,2, ..., mg) ;

when it is replaced by the binary item score U9 , Eq. (20) becomes Eq. (14) which includes

Eq. (17) as a special case.
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A straight-forward expansion of Warm's WLE for 3PL to general discrete responses provides

the solution of:

log L(v I 0) + -.9 w(9) = > Ak.(e) B(0A)I(0) 0
ae

(21)
kg Ev

as the WLE Ov , where L(v I 9) is given by Eq. (6), Ak9(0) is the basic function defined by

Eq. (2), B(0; ot,) is the MLE bias function given by Eq. (20), and 1(0) is the test information

function for general discrete responses provided by Eq. (8).

[IV. 3] Graphical Comparison of the WLE with the MLE

A graphical representation of the MLE and Warm's WLE will make their comparison easy.

Figure 9 presents the MLE bias function B(9; jv) of a hypothetical test of 30 equivalent

dichotomous items following the normal ogive model, whose ICC is given by Eq. (9), with the

common discrimination parameter ag = 0.7 and the common difficulty parameter b9 = 0.0 ,

respectively, represented by a short dashed line, and its product with the test information

function I(0) by a long dashed line. In the same figure, also presented are le log L(v I 9)

for four response patterns, which include 0, 1, 7, and 15 correct answers, respectively.

Insert Figure 9 About Here

It is obvious from Eq. (21) that the WLE it, of each response pattern is the value of 9

at which A. log L(v I 9) crosses the long dashed curve representing B(9; b) .1(0) , while

the MLE et, of the same response pattern is that of 0 at which log L(v I 0) intersects

the abscissa. Thus the amount of correction of the bias of the MLE is the distance between

the WLE and the MLE, as illustrated with respect to the response pattern in which only one

item is correct in Figure 9. It is obvious that the correction makes the estimates of 9 regress

toward 9 = bg = 0.0 in this example. Note that for the response pattern that consists of 15
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correct answers and 15 incorrect answers the correction is nil, and a .

[IV. 4] Straight-Forward Methods of Eliminating Bias

Lord (1983) suggested a direct correction of the bias of the MLE for the true test score,

which is a monotone transformation of ability 9 . When applied to the original ability scale

0 this corresponds to a subtracted by B(0; a) at 9 = o . This correction tends to

over-compensate the bias, and a more logical correction may be to identify the value of 9 at

which the discrepancy from a equals the value of the bias function at that point of 9 . This

can be done by drawing a line from the au with the angle of 45 degrees from the abscissa until

it reaches the curve of the MLE bias function, and then drawing a line vertical to the abscissa.

Thus the corrected MLE differs from the original ay by the expected amount of bias at that

point of 0 .

The relationships among the MLE at, , the two corrected MLE's and Warm's WLE at, are

also illustrated in Figure 9. It should be noted that the difference between the two corrected

MLE's can be substantially large where the MLE bias function assumes a steep curve.

[IV. 5] Usefulness of Warm's Weight Function as a Prior

These straight-forward corrections of at, makes us feel as if Warm's WLE were unnecessary.

Note, however, that these two corrected MLE's cannot be obtained either for the all-correct

response pattern or for the all-incorrect response pattern, while Eq. (21) provides WLE's for

these extreme response patterns also.

In Bayesian estimation of ability 9 , it is customary for researchers in psychology and

educational psychology to use the density function representing the ability distribution of some

population to which the examinee belongs. Some researchers even believe that, because such a

Bayesian estimation of ability uses additional information (i.e., the prior), the resulting ability

estimate should be more accurate than the MLE.

This idea contains several serious problems, however. First of all, as Samejima (1969) and

14 1 6



Lord (1986) pointed out, the use of such a prior increases the amount of bias of the ability

estimate. Secondly, since such a prior is based on rather trivial factors, such as gender, age, etc.,

this could lead to serious social and ethical problems. As Lord (1986) stated, the examinee's

estimated ability depends not only on his/her test performance but also on the nature of

the entire group in which he/she happens to be included; if the group as a whole is a low

ability group, the examinee's ability estimate may regress downward; if it is a high ability

group, his/her estimated ability may regress upward. Thus one may lose a job opportunity

if the priors represent gender differences, for example, while he/she may earn the job if they

represent socio-economic statuses.

To avoid this, it may be advisable to customize a prior for each individual examinee, by

taking the intersection of many different attributes, until finally no one else belongs to the

prior than the examinee. If such a prior can be identified, however, there will be no need for

testing.

Strengths of the prior used for the WLE are that:

1. the prior is intrinsic in the test and, therefore, nothing beside the examinee's test

performance is used in ability estimation, and no unfair discrimination against any

individual examinees will arise, and

2. its use will eliminate bias in ability estimation rather than increase it, so it can be

used effectively in CAT as well as in paper-and-pencil testing.

V. MODIFIED TEST INFORMATION FUNCTION

In CAT, it has been a widely used practice to adopt a set amount of test information in

the stopping rule. That is to say, when the amount of test information of the individually cus-

tomized subset of items selected from the itempool has reached that criterion amount at which

the examinee's individual parameter is currently estimated, no more items will be presented,
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and testing will be over. This will be legitimate when the individual parameter 0a of the

examinee lies within the interval of 8 where the MLE bias function is practically nil, but it

requires some modification when it lies outside of this interval.

Samejima proposed two modification formulae of the test information function (see Same-

jima, 1994b). These modifications are given by

and

T(0) = .40) [1 + re°B(0; 0.0]-2

aE(0) = 1(0) {[1 + B(0; + I(9) [B(0; ov)]2}-1 ,
ae (22)

respectively, where 1(0) is the test information function defined by Eq. (8) and B(0; Ov) is

the MLE bias function specified in Eq. (20). This second modified test information function,

E(0) , represents an approximate minimum bound of the mean squared error of the MLE, and

the amount of correction is greater for values of 0 at which unbiasedness of the MLE is more

pronounced. Figure 10 illustrates the square root of the E(0) defined by Eq. (22) by a dotted

line, in comparison with the square roots of the original test information function I(9) and

also T(0) which are drawn by solid and dashed lines, respectively, for the 43 multiple-choice

test items of the Iowa Level 11 Vacabulary Subtest, following the logistic model. It will be

desirable to use E(9) instead of .1(0) in the stopping rule of CAT, when the MLE is used for

the estimate of the examinee's individual parameter.

Insert Figure 10 About Here

VI. DISCUSSION

In this paper, in the effort of improving methods of applying IRT in practical situations,

especially in CAT, the content validity of the ability dimension was emphasized, and the idea of
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core test items was proposed. Devices are proposed to eliminate noise from multiple-choice test

items by making use of the nonparametric estimation of operating characteristics effectively

in pilot studies, and use of the normal ogive model instead of 3PL was suggested. It was

recommended to use several graded response items as those presented at the beginning of CAT

in order to avoid the influence of bias and lack of information intrinsic in dichotomous response

items. Warm's WLE and its expanded form for general discrete responses were discussed as

an effective method of eliminating bias in ability estimation, and the usefulness of Warm's

weight function as a prior was discussed. Use of the modified test information function was

also suggested for the same purpose.

The author hopes that these methods suggested in the present paper will be tested by re-

searchers in education in actual computerized adaptive testing, and the results will be compared

to find out how well each device, or combinations of devices, will work.
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Questions 13-19

Eight benchesJ, K, L, T, U, X, Y, and Zare
arranged along the perimeter of a park as shown below:

West

North

South

The following is true:
.1, K, and L are green; T and U are red; X, Y, and

Z are pink.
The green benches stand next to one another along the

park's perimeter.
The pink benches stand next to one another along the

park's perimeter.
No green bench stands next to a pink bench.
The bench on the southeast corner is T.
J stands at the center of the park's north side.
If T stands next to X, then T does not also stand

next to L.

13. Which one of the following benches could be on the
northeast corner of the park?

(A) Z
(B) Y
(C) X
(D) T
(E) L

14. Each of the following statements must be true
EXCEPT:

(A) The bench on the northwest comer is pink.
(B) The bench on the northeast corner is green.
(C) The bench on the southwest corner is pink.
(D) The middle bench on the east side of the park

is green.
(E) The middle bench on the west side of thepark

is pink.

15. Which one of the following benches must be next
to J ?

(A) K
(B) L
(C) T
(D) U
(E) X

16. For which one of the following benches are there two
and no more than two locations either one of which
could be the location the bench occupies?

(A) K
(B) T
(C) X
(D) Y
(E) Z

17. If Z is directly north of Y, which one of the
following statements must be true?

(A) .1 is directly west of K.
(B) K is directly east of U.
(C) U is directly north of X.
(D) X is directly south of J.
(E) Z is directly south of J.

18. If Y is in the middle of the west side of the park,
then the two benches in which one of the following
pairs CANNOT be two of the corner benches?
(A)
(B)
(C)
(D)
(E)

K and X
K and Z
L and U
L and X
L and Z

19. If Y is farther south than L and farther north than
T, then the benches in each of the following pairs
must be next to each other EXCEPT

(A)
(B)
(C)
(D)
(E)

J and L
K and T
T and X
U and Y
X and Z

FIGURE 1

Taken from LSAT, the Official Prep Test III, 1991, Vol. 2, Page 77:
An Example Question.



(a) J, K, and L are green; T and U are red; X, y, and
Z are pink.

(b) The green benches stand next to one another along the
park's perimeter.

(c) The pink benches stand next to one another along the
park's perimeter.

(d) No green bench stands next to a pink bench.
(e) The bench on the southeast corner is T.
(f) J stands at the center of the park's north side.
(g) If T stands next to X, then T does not also stand

next to L.

West

West

North

South

North

U

South

East West

East West

North

South

North

L

FIGURE 2

South

East

East

Modified LSAT Example to a Graded Response Item.
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LATENT TRAIT 0

FIGURE 7

Square Root of the Test Information Function of Each of the Five
Hypothetical Tests of 30 Equivalent Items: the Normal Ogive Model.

3



8
7
6
5
4
3
2
1

0

-1

ag=0.4
ag.0.7
ag.1.0
ag1.5
ag.2.0

-2
-3
-4
-5
-6
- 7

8
-5 -4 -2 -1 0 1 2

t4 4+ 4 +
ILATENT

1, .Igo 11 Ial
I '1;1 I

FIGURE 8

3 4

ITRAIT 0
5

MLE Bias Function of Each of the Five Hypothetical Tests of 30 Equivalent
Items: the Normal Ogive Model.



1.
0

III
 s

it

**
S

S
I.

Sa
m

ej
im

a'
s*S

.

sl
ef

ili
i#

8,
L

E
--

1
i

1
M

4,
, /..

t
va

. n
o 

lit
ir

m
il4

l'a
 °

I 
"

M
I 

M
I 

II
II

I 
IS

 W
O

 a
ll

*A
to

*4
4,

+
t

*
0
I 0

--
-.

.
rv

e
<

 C
D

C
i's

C
I

is
,

\..
._

4Z
?

.
cq

-2
.0

.

W
ar

m
's

W
L

E
a

-5
.0

33

-4
.0

-3
.0

-2
.0

FI
G

U
R

E
 9

-1
.0

0.
0

L
A

T
E

N
T

 T
R

A
IT

 0

R
el

at
io

ns
hi

ps
 a

m
on

g 
th

e 
M

L
E

 e
t,

,
th

e 
T

w
o 

C
or

re
ct

ed
 M

L
E

's
by

 L
or

d 
an

d 
Sa

m
ej

im
a,

 R
es

pe
ct

iv
el

y,
 a

nd
 W

ar
m

's
 W

L
E

 O
v

34



5.0

4.0

3.0

2.0

1.0

0.0
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

sq.rt., 1st mod.t.i.f.
sq.rt., 2nd mod.t.i.f.

&no 0.50 130 ILO 6.03

W07W LDAT, 140:77. Q by I.MJCY 1)01411

LATENT TRAIT 9

FIGURE 10

Square Roots of the Test Information Function (Solid) and Its Two
Modifications (Dashed & Dotted) of the Iowa Level 11 Vocabulary Subtest:

the Logistic Model.
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